
StaticPy Documentation
Release 0.2.1

SnowWalkerJ

Jan 14, 2020

Contents:

1 Introduction 1
1.1 Compare to alternatives . 1

2 Get Started 3
2.1 Install StaticPy . 3
2.2 Concepts . 3
2.3 Using StaticPy . 3

3 User Guide 5
3.1 Declare variable . 5
3.2 Constants . 5
3.3 Types . 6
3.4 Flow Control . 6
3.5 Standard Library Functions . 6
3.6 External Functions . 7

4 Translator 9

5 Contribute 11

6 Indices and tables 13

i

ii

CHAPTER 1

Introduction

StaticPy is a Python-to-C++ translater. It is designed in a way that code can be run in both Python and C++ mode.
That is, StaticPy valid code should be able to not only be translated to C++ and compiled, but also run by Python
interpreter directly.

It supports a subset of Python grammar. It analyzes Python AST and translates it to C++. You can write a C++
template and embed the generated code in your template to form a complete code.

Optionally, it can bind the C++ code back to Python using Pybind11 to grant super speed to Python.

1.1 Compare to alternatives

1.1.1 Compare to Cython

Cython has the advantage of being very flexible. It translates everything static enough to C and leave the rest as it is.
By doing that, it allows you to enjoy both the flexibility of Python and fastness of C. StaticPy, however, requires you
use only supported grammar(only static-typed variables, for example). The good thing about it is that it can generate
pure C++ code without support of Python, so that you can embed the code to a C++ project.

Another difference is that Cython compiles the source code in a static way. It analyzes the source code and translates
it to C. An explicit compilation is necessary before you can use the generated module. StaticPy is more like numba in
a way that only a decorator around the function and everything is done.

1.1.2 Compare to numba

StaticPy supports C++ better than numba. You can include outside sources and use C++ functions/class directly with
StaticPy.

In order to generate pure C++ code, numpy is not supported by StaticPy, which is a huge disadvantage compared to
numba.

In addition, the compiling time of StaticPy seems much longer.

1

StaticPy Documentation, Release 0.2.1

2 Chapter 1. Introduction

CHAPTER 2

Get Started

2.1 Install StaticPy

git clone https://github.com/SnowWalkerJ/StaticPy.git
cd StaticPy
pip install -r requirements.txt
python setup.py install

2.2 Concepts

C++ is a static-type language. Each variable has a type determined at compile time. StaticPy is not good at deducing
the types for you. So if you wish StaticPy to speedup your code, you have to carefully annotate each variable with
proper type.

2.3 Using StaticPy

2.3.1 jit

One way to use StaticPy to speed up your code is through the jit decorator. You should carefully annotate each variable,
parameter and return value.

from staticpy import jit

@jit
def frac(n: int) -> int:

if n <= 1:
return 1

else:
return n * frac(n - 1)

3

StaticPy Documentation, Release 0.2.1

The function will be compiled the first time it is called. If you wish it to compile immediatelly, call frac.compile().

A jit function will be re-compiled under the following circumstances:

• the source code of the function is modified since the last compilation

• a force-compile option is turned on

• obj.compile() is called

Note that a jit function is strict on types. You can’t pass an int value to a float parameter or a float value to an int
parameter. A manually overloading is needed.

2.3.2 import hook

StaticPy has a import-hook that allows compile a whole module when you import it. Enable it by calling import
staticpy.hook before you import any other module.

To specify a module that wishes to be compiled by StaticPy, write a signal # @staticpy at the first line of your module.
This signal lets StaticPy know which modules should be compiled.

@staticpy
mod.py
make sure # @staticopy is at the first line

def frac(n: int) -> int:
if n <= 1:

return 1
else:

return n * frac(n - 1)

main.py
import staticpy.hook # Enables compile-at-import
import mod # StaticPy compiles `mod`

assert mod.frac(4) == 24

4 Chapter 2. Get Started

CHAPTER 3

User Guide

3.1 Declare variable

Like in C++, each variable must be declare before it’s used. Declare a variable using annotated assignment in StaticPy.
Here is an example:

variable: int = 0
or
variable: int

The later one declares a variable without intializing it.

3.2 Constants

If you assign a variable wihout declaring its type, the variable is considered a python constant. This constant is like a
macro variable in C/C++. The variable itself will never appear in the generated code. It’s replaced with the value it’s
assigned with. For example,

zero = 0
myvar: int = zero + 1

will be translated into:

int myvar = 0 + 1;

5

StaticPy Documentation, Release 0.2.1

3.3 Types

3.3.1 Primitives

Basic types are Bool, Int, Long, Float and Double, which represents bool, int, long, float and double in C++ respec-
tively. If you use Python type int and float, they are also mapped to int and float in C++.

We understand that int and float in Python actually represents long and double in C. But we think it is confusing that
Int means int while int means long.

3.3.2 Arrays

Arrays are supported as function parameters (but not return types yet). You can declare an array type by something
like Int[:] or Float[3]. This is almost like what you would expect in Numba or Cython. Array types with provided
shapes is appreciated because compiler can take advantage of this information to optimize the generated code.

Multi-dimensional arrays can be declared with Long[3, 2].

Just like in Numba and Cython, a continuous array is much more efficient than a normal array. So if you are sure an
array is continuous, you should annotate it to generate more efficient code. Unlike Numba or Cython, which annotate
a continuous array with int[::1], StaticPy use a bool flag at the end of the shape annotation. Use Int[3, 2, True] to
annotate a continuous type with 3x2 elements. If you feed a non-continuous array to a continuous typed parameter, it
may access an invalid memory and cause error or (worsely) return a wrong result without warnings.

3.3.3 Lists and Dicts

List and dict are commonly used containers in Python. They have counterparts in C++ as well. Using them in StaticPy
is possible yet not realized. This is one of the most important features we are currently working on.

3.4 Flow Control

Most flow-control statements are supported in StaticPy such as while, if, else. do-while is not supported because it
doesn’t exist in Python. The elif is a little tricky, though. It is translated to else { if () {}}. This is sementically
equivalent in C/C++, but not quite human-friendly to read.

Another commonly used feature is for. So far only for x in range(. . .) is valid in StaticPy. It is translated into for (i =
start; i < end; i += step) {}. A general form of for-each is neither supported nor intend to be supported in the short
term.

3.5 Standard Library Functions

Very few C++ standard library functions have Python counterparts. We don’t intend to port them in StaticPy. However,
functions in cmath and iostream are so commonly used that we consider it inconvinient missing them.

3.5.1 iostream

Commonly used objects cin, cout, cerr and endl are implemented in staticpy.lib.iostream. You are free to use them in
both Python mode and C++ mode. One difference is that you need to call cout() to actually get the cout object. The
same applies to cin, cerr and endl.

6 Chapter 3. User Guide

StaticPy Documentation, Release 0.2.1

What’s more, the cin >> x usage in C++ relies heavily on the overload of operator>> based on static typing. So the
cin object doesn’t function properly in Python.

from staticpy.lib.iostream import cout, endl
def myprint(num: float):

cout() << "The value is " << num << endl()

There is an additional function we define for easy and pretty output: cprint.

from staticpy.lib.iostream import cprint
def myprint():

cprint(1.0) # 1.0
cprint(x=1.0) # x = 1.0
cprint("Hello", my_name="Jack") # Hello, my_name = Jack

3.5.2 cmath

Many math functions has implementations in both Python and C++. You can access them in staticpy.lib.cmath.

from staticpy.lib.cmath import cos

def mycos(x: float) -> float:
return cos(x)

3.6 External Functions

StaticPy allows you invoke external C++ functions. These functions can’t be called in pure Python mode, of course.
But they can function properly after compilation. Use staticpy.util.extern.ExternalFunction to declare external func-
tions.

from staticpy.util.extern import ExternalFunction
from staticpy import jit

cos = ExternalFunction("cos", "<cmath>", "std")

@jit
def mycos(x: float) -> float:

This cos function can not be called in Python mode.
return cos(x)

An external function can also be a function template.

from staticpy.util.extern import ExternalFunction
from staticpy import jit

fmax = ExternalFunction("fmax", "<cmath>", "std")

@jit
def mymax(x: float) -> float:

return fmax[float](x, 0) # std::fmax<float>(x, 0.0)

3.6. External Functions 7

StaticPy Documentation, Release 0.2.1

8 Chapter 3. User Guide

CHAPTER 4

Translator

One major goal for StaticPy is to generate pure C++ code. This is done by calling a translator.

import inspect
from staticpy.translator import BaseTranslator

def fn(n: int) -> int:
s: int = 0
for i in range(n):

s += i
return s

source = inspect.getsource(fn)
translator = BaseTranslator()
block = translator.translate(source)

print("\n".join(block.translate()))

This prints out

int fn(int n) {
int s = 0;
for(int i = 0; i < n; i++) {
s += i;

}
return s;

}

9

StaticPy Documentation, Release 0.2.1

10 Chapter 4. Translator

CHAPTER 5

Contribute

11

StaticPy Documentation, Release 0.2.1

12 Chapter 5. Contribute

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

13

	Introduction
	Compare to alternatives

	Get Started
	Install StaticPy
	Concepts
	Using StaticPy

	User Guide
	Declare variable
	Constants
	Types
	Flow Control
	Standard Library Functions
	External Functions

	Translator
	Contribute
	Indices and tables

