

Welcome to StaticPy’s documentation!

Contents:

	Introduction
	Compare to alternatives

	Get Started
	Install StaticPy

	Concepts

	Using StaticPy

	User Guide
	Declare variable

	Constants

	Types

	Flow Control

	Standard Library Functions

	External Functions

	Translator

	Contribute

Indices and tables

	Index

	Module Index

	Search Page

Introduction

StaticPy is a Python-to-C++ translater. It is designed in a way that code can be run in both Python and C++ mode. That is,
StaticPy valid code should be able to not only be translated to C++ and compiled, but
also run by Python interpreter directly.

It supports a subset of Python grammar. It analyzes Python AST and translates it to C++.
You can write a C++ template and embed the generated code in your template to form a complete code.

Optionally, it can bind the C++ code back to Python using Pybind11 to grant super speed to Python.

Compare to alternatives

Compare to Cython

Cython has the advantage of being very flexible. It translates everything static enough to C and leave the rest as it is.
By doing that, it allows you to enjoy both the flexibility of Python and fastness of C.
StaticPy, however, requires you use only supported grammar(only static-typed variables, for example).
The good thing about it is that it can generate pure C++ code without support of Python, so that you can embed the code to
a C++ project.

Another difference is that Cython compiles the source code in a static way. It analyzes the source code and translates it to C.
An explicit compilation is necessary before you can use the generated module. StaticPy is more like numba in a way that
only a decorator around the function and everything is done.

Compare to numba

StaticPy supports C++ better than numba. You can include outside sources and use C++ functions/class directly with
StaticPy.

In order to generate pure C++ code, numpy is not supported by StaticPy, which is a huge disadvantage compared to numba.

In addition, the compiling time of StaticPy seems much longer.

Get Started

Install StaticPy

git clone https://github.com/SnowWalkerJ/StaticPy.git
cd StaticPy
pip install -r requirements.txt
python setup.py install

Concepts

C++ is a static-type language. Each variable has a type determined at compile time.
StaticPy is not good at deducing the types for you. So if you wish StaticPy to
speedup your code, you have to carefully annotate each variable with proper type.

Using StaticPy

jit

One way to use StaticPy to speed up your code is through the jit decorator.
You should carefully annotate each variable, parameter and return value.

from staticpy import jit

@jit
def frac(n: int) -> int:
 if n <= 1:
 return 1
 else:
 return n * frac(n - 1)

The function will be compiled the first time it is called. If you wish it to compile immediatelly,
call frac.compile().

A jit function will be re-compiled under the following circumstances:

	the source code of the function is modified since the last compilation

	a force-compile option is turned on

	obj.compile() is called

Note that a jit function is strict on types. You can’t pass an int value to a float parameter or a
float value to an int parameter. A manually overloading is needed.

import hook

StaticPy has a import-hook that allows compile a whole module when you import it. Enable it by calling
import staticpy.hook before you import any other module.

To specify a module that wishes to be compiled by StaticPy, write a signal # @staticpy at the first line of
your module. This signal lets StaticPy know which modules should be compiled.

@staticpy
mod.py
make sure # @staticopy is at the first line

def frac(n: int) -> int:
 if n <= 1:
 return 1
 else:
 return n * frac(n - 1)

main.py
import staticpy.hook # Enables compile-at-import
import mod # StaticPy compiles `mod`

assert mod.frac(4) == 24

User Guide

Declare variable

Like in C++, each variable must be declare before it’s used. Declare a variable using
annotated assignment in StaticPy. Here is an example:

variable: int = 0
or
variable: int

The later one declares a variable without intializing it.

Constants

If you assign a variable wihout declaring its type, the variable is considered a python constant.
This constant is like a macro variable in C/C++. The variable itself will never appear in the
generated code. It’s replaced with the value it’s assigned with. For example,

zero = 0
myvar: int = zero + 1

will be translated into:

int myvar = 0 + 1;

Types

Primitives

Basic types are Bool, Int, Long, Float and Double, which represents bool, int, long,
float and double in C++ respectively. If you use Python type int and float, they are also
mapped to int and float in C++.

We understand that int and float in Python actually represents long and double in C. But we think
it is confusing that Int means int while int means long.

Arrays

Arrays are supported as function parameters (but not return types yet). You can declare an array type by
something like Int[:] or Float[3]. This is almost like what you would expect in Numba or Cython.
Array types with provided shapes is appreciated because compiler can take advantage of this information
to optimize the generated code.

Multi-dimensional arrays can be declared with Long[3, 2].

Just like in Numba and Cython, a continuous array is much more efficient than a normal array. So if
you are sure an array is continuous, you should annotate it to generate more efficient code. Unlike
Numba or Cython, which annotate a continuous array with int[::1], StaticPy use a bool flag at the
end of the shape annotation. Use Int[3, 2, True] to annotate a continuous type with 3x2 elements.
If you feed a non-continuous array to a continuous typed parameter, it may access an invalid memory and cause
error or (worsely) return a wrong result without warnings.

Lists and Dicts

List and dict are commonly used containers in Python. They have counterparts in C++ as well. Using
them in StaticPy is possible yet not realized. This is one of the most important features we are
currently working on.

Flow Control

Most flow-control statements are supported in StaticPy such as while, if, else. do-while is not supported
because it doesn’t exist in Python. The elif is a little tricky, though. It is translated to else { if () {}}.
This is sementically equivalent in C/C++, but not quite human-friendly to read.

Another commonly used feature is for. So far only for x in range(…) is valid in StaticPy. It is translated into
for (i = start; i < end; i += step) {}. A general form of for-each is neither supported nor intend to be supported
in the short term.

Standard Library Functions

Very few C++ standard library functions have Python counterparts. We don’t intend to port them in StaticPy. However,
functions in cmath and iostream are so commonly used that we consider it inconvinient missing them.

iostream

Commonly used objects cin, cout, cerr and endl are implemented in staticpy.lib.iostream. You are free to use them
in both Python mode and C++ mode. One difference is that you need to call cout() to actually get the cout object.
The same applies to cin, cerr and endl.

What’s more, the cin >> x usage in C++ relies heavily on the overload of operator>> based on static typing.
So the cin object doesn’t function properly in Python.

from staticpy.lib.iostream import cout, endl
def myprint(num: float):
 cout() << "The value is " << num << endl()

There is an additional function we define for easy and pretty output: cprint.

from staticpy.lib.iostream import cprint
def myprint():
 cprint(1.0) # 1.0
 cprint(x=1.0) # x = 1.0
 cprint("Hello", my_name="Jack") # Hello, my_name = Jack

cmath

Many math functions has implementations in both Python and C++. You can access them in staticpy.lib.cmath.

from staticpy.lib.cmath import cos

def mycos(x: float) -> float:
 return cos(x)

External Functions

StaticPy allows you invoke external C++ functions. These functions can’t be called in pure Python mode, of course.
But they can function properly after compilation. Use staticpy.util.extern.ExternalFunction to declare external
functions.

from staticpy.util.extern import ExternalFunction
from staticpy import jit

cos = ExternalFunction("cos", "<cmath>", "std")

@jit
def mycos(x: float) -> float:
 # This cos function can not be called in Python mode.
 return cos(x)

An external function can also be a function template.

from staticpy.util.extern import ExternalFunction
from staticpy import jit

fmax = ExternalFunction("fmax", "<cmath>", "std")

@jit
def mymax(x: float) -> float:
 return fmax[float](x, 0) # std::fmax<float>(x, 0.0)

Translator

One major goal for StaticPy is to generate pure C++ code. This is done by calling a translator.

import inspect
from staticpy.translator import BaseTranslator

def fn(n: int) -> int:
 s: int = 0
 for i in range(n):
 s += i
 return s

source = inspect.getsource(fn)
translator = BaseTranslator()
block = translator.translate(source)

print("\n".join(block.translate()))

This prints out

int fn(int n) {
 int s = 0;
 for(int i = 0; i < n; i++) {
 s += i;
 }
 return s;
}

Contribute

Index

Advanced

Syntax Tree

Variables

Expressions

Statements

Blocks

	Block = EmptyBlock

	
If expression

Else

For variable expression expression expression

While expression

Function name [(type, name)] type

Class name members

AccessBlock name

Constructor

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to StaticPy’s documentation!

 		
 Introduction

 		
 Compare to alternatives

 		
 Compare to Cython

 		
 Compare to numba

 		
 Get Started

 		
 Install StaticPy

 		
 Concepts

 		
 Using StaticPy

 		
 jit

 		
 import hook

 		
 User Guide

 		
 Declare variable

 		
 Constants

 		
 Types

 		
 Primitives

 		
 Arrays

 		
 Lists and Dicts

 		
 Flow Control

 		
 Standard Library Functions

 		
 iostream

 		
 cmath

 		
 External Functions

 		
 Translator

 		
 Contribute

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

